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Numerical method for calculation of the incompressible �ow
in general curvilinear co-ordinates with double staggered grid
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SUMMARY

A solution methodology has been developed for incompressible �ow in general curvilinear co-ordinates.
Two staggered grids are used to discretize the physical domain. The �rst grid is a MAC quadrilateral
mesh with pressure arranged at the centre and the Cartesian velocity components located at the middle
of the sides of the mesh. The second grid is so displaced that its corners correspond to the centre of
the �rst grid. In the second grid the pressure is placed at the corner of the �rst grid. The discretized
mass and momentum conservation equations are derived on a control volume. The two pressure grid
functions are coupled explicitly through the boundary conditions and implicitly through the velocity of
the �eld. The introduction of these two grid functions avoids an averaging of pressure and velocity
components when calculating terms that are generated in general curvilinear co-ordinates. The SIMPLE
calculation procedure is extended to the present curvilinear co-ordinates with double grids.
Application of the methodology is illustrated by calculation of well-known external and internal prob-
lems: viscous �ow over a circular cylinder, with Reynolds numbers ranging from 10 to 40, and lid-driven
�ow in a cavity with inclined walls are examined. The numerical results are in close agreement with
experimental results and other numerical data. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The main aim of the present study is to devise and test a technique for calculation of in-
compressible �ow in general co-ordinates. A numerical methodology for calculation of �ow
is identi�ed by a pattern of interaction procedures involving the physical domain and the
conservation equation’s discretization, boundary conditions and solver.
This method has been developed around the structure of the conservation equations in

general co-ordinates. The gradient term in general co-ordinates (Figure 1) is

’x=(’�y� − ’�y�)=J (1)
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Figure 1. Double set of computational grids: (a) �rst staggered grid cell; (b) second staggered
grid displacement; (c) second pressure cell displacement; (d) a grid for which Cartesian and

contravariant velocities are not aligned.

A distinguishing feature of the gradient term in general co-ordinates is the existence of two
terms. In developing new methods or algorithms for general co-ordinates it is desirable to
retain as many and as much as possible of the advantages and simplicity of existing widely
used algorithms for Cartesian co-ordinates (e.g. SIMPLE or SIMPLER, Reference [1]), and
there are control volume methods which avoid the calculation of one of these two terms in
an explicit form. We will �rst look more closely at the pressure gradient:

px=(p�y� − p�y�)=J (2)

Use of the staggered grid in general co-ordinates has been described by Shyy et al. [2] and by
Faghri et al. [3]. Since the successive line under-relaxation (SLUR) method was used to solve
the system of �nite-di�erence equations by applying the e�cient tri-diagonal equation solver,
the p� or p� is dropped. An alternative formulation that was used by Shyy et al. [2] also
involves putting p� and p� into the source term. A two-dimensional kidney-shaped channel
was used to illustrate the application of the algorithm. The �ow pattern in this control case
has a main direction, and it is valid to neglect one of the terms in Equation (2).
Alternative ways to exploit all the advantages of the �ve-point di�erence equation were

presented by Faghri et al. [3] who eliminated p� or p� by averaging neighbouring pressures,
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INCOMPRESSIBLE FLOW IN GENERAL CURVILINEAR CO-ORDINATES 1275

and by Maliska and Raithby [4] who used linear interpolation to account for the non-uni-
form grid.
Velocity is a second primitive variable; the x component in general co-ordinates, in accor-

dance with Equation (1) is

ux=(u�y� − u�y�)=J (3)

Approximation of the velocity in the discretized space presents many problems, in addition
to the above equations (as shown by Peyret and Taylor [5]).
The problems of discretization of the physical domain and of the conservation equations

are a major focus of interest in the present study.

2. DISCRETIZATION PROCEDURE

2.1. Physical domain discretization

To facilitate the derivation of the �nite-di�erence formulation, the solution domain in the x,
y co-ordinate system is �rst discretized. Peyret and Taylor [5] discussed the e�ect of the
mesh on the numerical solution. A computational procedure was developed by Lien et al. [6]
(and others whom they cite), on the basis of �nite volumes, which are collocated so that all
�ow variables are stored at one and the same set of nodes. For this collocation arrangement
Rhie and Chow [7] proposed a non-linear interpolation scheme for formulating the pressure
–velocity coupling form. Thus, we want to use the staggered grid technique, which o�ers
conservation of mass, momentum and kinetic energy in a natural way, and which avoids the
decoupling of odd–even points. The staggered grid in general curvilinear co-ordinates has
been operated in methodologies described by Shyy et al. [2], Faghri et al. [3] and Maliska
and Raithby [4].
Two grids are used to discretize the physical domain. For the �rst grid, a MAC [5] staggered

grid system is adopted, as shown in Figure 1(a). A grid system is generated numerically or
algebraically at the position marked by �lled circles. The pressure p1i; j is arranged at the
arithmetic centre of these four circles. The numerical notation of the p1 is designed so that
indexes (1; 1) belong to the left bottom mesh of the domain, p1i;0 lies at the bottom and p10; j
belongs to the left boundary. The Cartesian velocity components u1i+1; j and u1i; j are located
at the midpoints of the e and w faces of the control volume, and the Cartesian velocity
components v1i; j and v1i; j+1 are located at the midpoints of the s and n faces of the control
volume. A typical grid node, P, is enclosed in its cell and surrounded by its neighbours N , S,
E, and W . The second grid (Figure 1(b)) is displaced so that the centre of its mesh coincides
with the corner of that of the �rst mesh grid (shaded area) and its corners correspond to the
centre of that of the �rst grid. The pressure p2i; j in the second grid is placed at the corner
of the �rst mesh. Note that for convenience in numerical coding and the relation between
�rst and second grid indexes, fractional indexes are not used in notations, e.g. p21;1 belongs
to the left bottom corner and p22;2 to the diagonally opposite corner of the �rst grid mesh
(Figure 1(c)). The Cartesian velocity components u2i; j and u2i; j+1 are located at the midpoints
of the s and n faces of the �rst grid control volume, and the Cartesian velocity components
v2i+1; j and v2i; j are located at the midpoints of the e and w faces of the �rst grid control
volume. Thus, two sets of the primitive variables de�ne the physical domain, indexes of the
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1276 A. SHKLYAR AND A. ARBEL

�rst velocity component u1 coincide with those of the second velocity component v2, that also
is valid for u2 and v1. For this mesh type, Peyret and Taylor [5] note, ‘it would be possible to
couple (weakly) the two �elds by way of the special technique needed to de�ne the pressure
on �’.
The transformation from the physical domain to rectangular co-ordinates may be done

by conventional methods. The terminology, notation, coe�cients and relationships for the
geometric metric used here are derived from Thompson [8], and will be explained within
their context, as necessary.

2.2. Discretization of the continuity equation

We consider incompressible, steady-state �ow. The mass �ux, �u is integrated over a control
volume in physical space, bounded by lines of constants � and �.
(p1i; j is placed in the centre of this volume),

∫
S
�u · n ds=0 (4)

Here u is a velocity vector, written as u=[u; v], with Cartesian components u; v, and unit vector
n=[nx; ny] normal to the surface element ds, S is the enclosing surface of �nite volume.
For evaluation of the surface integral, expressions are needed for the surface element ds

and the normal unit vector n. As suggested above, for the quadrilateral mesh, the surface
integral may be subdivided into the sum of four surface integrals over the segments dse, dsw,
dss, dsn, respectively.
Only the integral over the surface dse will be evaluated here, as an example. In the general

form [8]

dse= g1=222 d�= h� d�; n=
1
h�
(exy� − eyx�) (5)

where ex, ey are the Cartesian unit vectors, g is the matrix transformation

g11 = x2� + y2� ; g12 = g21 = x�x� + y�y�; g22 = x2� + y2� ;

J = x�y� − x�y�; h� = g1=222
(6)

The integrations are performed by regarding all values as constant over each face:

�U 1
i+1; j − �U 1

i; j + �V 1
i; j+1 − �V 1

i; j=0 (7)

The U;V in this equation, are the contravariant velocity components, written without metric
normalization (as shown in Figure 1(d), the Cartesian velocities (u; v) are not aligned with
these contravariant velocity components), where d�=d� without loss of generality

U 1
i; j = u1i; jy� − v2i; jx� (8)

V 1
i; j = v1i; jx� − u2i; jy� (9)
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INCOMPRESSIBLE FLOW IN GENERAL CURVILINEAR CO-ORDINATES 1277

Under interpolation of Equation (4), �U and �V are the mass �uxes across the cell
surfaces given by � and � lines, respectively. On the ‘one-staggered-grid approximation’ the
contravariant velocity component is calculated in the form

U 1
i; j= u1i; jy� − vi; j x� (10)

where vi; j is approximated from the ‘one grid’. Thus contravariant velocity components of the
�rst grid are linked to the second grid through Equations (8) and (9).
For the second pressure cell (i.e. for a control volume with midpoint p2i+1; j+1) the discrete

mass balance is

�U 2
i+1; j+1 − �U 2

i; j+1 + �V 2
i+1; j+1 − �V 2

i+1; j = 0 (11)

U 2
i; j = u2i; jy� − v1i; jx� (12)

V 2
i; j = v2i; j x� − u1i; jy� (13)

Note, that indexes of the contravariant velocity components U 1, V 2 coincide at the same
point, and this is also valid for U 2, V 1.

2.3. Evaluation of metrics

Before deriving the discrete analogue of the momentum equation, some comments about the
evaluation of the metric and of the metric derivatives are appropriate.
Shyy et al. [2] used two methods of evaluating the metric derivatives. In the �rst approach,

if x� (at the midpoint of the e surface of the control volume for p1) (Figure 1(a)) is to be
evaluated, method I calculates it by taking the quotient of the distance in the y direction
between the two endpoints of the e surface, and the distance in the � direction between the
same two points. Method II calculates the midpoint by interpolating linearly between the
values already calculated at points P and E. The metric derivatives at point P are evaluated
by central di�erencing, based on the geometric relations of the four endpoints that de�ne the
control volume. In the algorithm presented by Shyy et al. [2], method I is more accurate than
method II in ful�lling the physical conservation laws.
The problems of the metric evaluation were examined thoroughly by Thompson [8], and

we follow one basic rule: ‘never average the metric coe�cients’.
We de�ne

x�|e = (xi+1; j+1 − xi+1; j)=d� (14)

x�|e = (xi+2; j − xi; j + xi+2; j+1 − xi; j+1)=4 d� (15)

By this elementary geometrical reasoning, the value of the derivative (Equation (14)) may be
used not only for e point but for P and E points as well

x�|P= x�|e= x�|E (16)

Thus, the values x�|e and x�|e are assigned to all control volumes with midpoint u1. This
de�nition of the evaluation of the metric is fully symmetrical and descriptive with reference
to double-discretized pressure �elds.
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1278 A. SHKLYAR AND A. ARBEL

Symmetric expressions in Equations (14) and (15) do satisfy the conservative requirement
of the conservation expression for �rst derivatives in general co-ordinates [8], e.g.

x��= x�� (17)

2.4. Discretization of the momentum equation

A momentum balance for control volume (u1i; j is placed in the centre of this volume) gives:
∫
S
�uu · n ds=

∫
S
T · n ds (18)

T is the stress tensor, T=S− pI, S is the extra stress tensor

S=
2
Re
[D− 1

3 (∇ · u)I] (19)

D the rate of deformation tensor, in incompressible �ow

Sxx=
2
Re

ux; Sxy= Syx
1
Re
(uy + vx); Syy=

2
Re

vy (20)

The algebraic formulae for dse and dsn are:

(uU ) d�|e + · · ·= 1
Re

(
C1u� + C2u� +

y�

J
(U� + V�) + v�

)
d�|e − py� d�|e + · · · (21)

(uV ) d�|n + · · ·= 1
Re

(
C3u� + C4u� − y�

J
(U� + V�)− v�

)
d�|n + py� d�|n + · · · (22)

where

C1 = J−1g22; C3 = J−1g11; C2 =C4 = J−1g12 (23)

This relationship gives the equilibrium state for the control volume. Let us consider the terms
of the right-hand sides of Equations (21) and (22), and some aspects of their approximations
on the double staggered grids. For an orthogonal grid, g12 = 0, and C2 =C4 = 0. In the dis-
cretized form of Equations (21) and (22) terms U�+V� are recognized as continuity equations
in general curvilinear co-ordinates (Equations (7) and (11)) and disappear in the di�eren-
tial form (e.g. Reference [4]), terms v� and v� also vanish under conditions d�→ 0, d�→ 0,
but if weak approximations are used for the integral form of Equation (18), there may arise
situations in which there are additional friction components

1
Re
(−u� d�|n + u�v� d�|s − u� d�|e + u� d�|w);

1
Re
(v� d�|n − v� d�|s = v� d�|e − v� d�|w)

(24)

that vanish d�→ 0 and d�→ 0.
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Rewrite (22) for the �rst grid, using explicit manner for u1

(u1V 1) d�|n + · · · = 1
Re

(
C3u1� + C4u� − y�

J
(U 1

� + V 1
� )− v�

)
d�|n + py� d�|n + · · · (25)

here U 1 and V 1 are expressed in terms of double grid variables (Equations (8) and (9)). In
a similar manner, design equation for u1 may be derived from the second grid

u1�|n=(u2i+1; j+1 − u2i; j+1)=d� (26)

Thus, this double grid gives an advantage over displacement routines when, in place of u�

averages of u1 are used

v1�|n=(v1i+1; j+1 − v1i+1; j)=d�; p=p2i+1; j+1 (27)

In (25) each derivative is discretized in terms of the two neighbouring points, based on the
assumptions of linear pro�les, and is evaluated in terms of the values from the previous
iteration.
A particular scheme for discretization of the left-hand sides of Equations (21) and (22)

depends on the relative importance of convection and di�usion. Central di�erencing can be
used for a suitably small mesh size. For �uid �ow problems in general, convection may be
large and, therefore, the scheme should account for the special in�uence of the upstream
points. Convection and di�usion �ux on the control volume surface are combined to de�ne
the total �ux Je on surface e

Je=Feu1 +Deu1� + Se (28)

where the �ow rate, Fe, the di�usion coe�cients, De and the additional di�usion source, Se

are given by

Fe=(U d�)|e; De=
(
C1
Re
d�

)∣∣∣∣
e
; Se=

1
Re
(C2u1� − v�) d�|e (29)

For an orthogonal grid and on condition that the terms of Equation (24) are equal to zero,
Se=0, and Equation (29) fully coincides in form with the one-dimensional case.
In the present paper, we use approximation schemes [1]. In general, for any Je

Je − Feu1P= aE(u1P − u1E) (30)

where P and E are neighbouring points, and

aE =DeA
∣∣∣∣ FeDe

∣∣∣∣+max | − Fe; 0| (31)

Two di�erent functions are used for A in examples.
The �nal form of the discretized momentum equation speci�c to grid point u1i; j may

be written as (a more detailed treatment of a single staggered grid was presented by
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1280 A. SHKLYAR AND A. ARBEL

Patankar [1])

a1ui; ju
1
i; j = a1ui+1; ju

1
i+1; j + a1ui−1; ju

1
i−1; j + a1ui; j+1u

1
i; j+1 + a1ui; j−1u

1
i; j−1

− (p1i; j − p1i−1; j)y� d�+ (p2i; j+1 − p2i; j)y� d�+ S1i; j (32)

where a is similar to Equation (31), a and S include second grid approximation.
From Figure 1(b) it is evident that all the above discussion for u1 may be applied to

component v2 of the secondary �eld. In internal grid points the a-coe�cients should be the
same. The following explanations cover certain cases in which the control volume is connected
to the boundary.

1. If the e-point lies on the body surface, then non-slip conditions u1 = 0, v2 = 0 are applied.
2. If the e-point lies on the symmetry axes, u1�=0, v2 = 0, and the a-coe�cients are
di�erent.

Thus, a di�erential approximation for the boundary cells depends on the boundary conditions
on the cell side, and two types of the boundary conditions may be speci�ed for the same cell
side, e.g. Dirichlet conditions for the second v2 component, and Neuman condition for the u1

component

v2 = 0; u1�=0 (33)

3. VELOCITY–PRESSURE LINKAGE

3.1. Pressure correction equation

The method used here for handling the velocity–pressure linkage resembles the SIMPLE
procedure [1] for Cartesian co-ordinates. In this method, the guessed pressure �eld is used to
obtain a �ow �eld from the momentum equation. This �ow �eld does not satisfy the continuity
equation at the �rst iteration, therefore, the pressure �eld is corrected so that the resulting
velocity �eld satis�es the continuity equation. The pressure correction equation is derived by
combining the continuity equation with truncated forms of the momentum equation. After the
pressure correction equation has been solved, the velocity and pressure �elds are corrected,
and the procedure is repeated until the numerical solutions converge.
In a general co-ordinate system the pressure correction equation contains two derivatives

p� and p�. In deriving the pressure correction equation, Shyy et al. [2] dropped the p� term
or the p� terms to retain the structure of the �ve-point approximation in each �nite-di�erence
equation. This permits retention of the simple and e�cient tri-diagonal equation solver. An
alternative formulation [2–4] is to put the p� term and p� term into the source term in the
pressure–correction equation.
Other techniques for the SIMPLE algorithm will be generalized to general co-ordinates with

a double staggered grid. Let us assume that a guessed pressure �eld p1
∗
, the solution to the

momentum equation (Equation (32)) was obtained. Then it is assumed that the correction of
the pressure is given by

p1 =p1
∗
+ p1

′
(34)
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which yields new solutions

u1 = u1
∗
+ u1

′
; v1 = v1

∗
+ v1

′
; u2 = u2

∗
+ u2

′
; v2 = v2

∗
+ v2

′
(35)

With Equations (34) and (35), and the procedure for staggered grid [1], we can obtain the
correction equations for �rst �eld velocity, terms involving second pressure are inputted to
the source in the momentum equations:

u1i; j = u1
∗

i; j − (p1
′

i; j − p1
′

i−1; j)y�=a1ui; j (36)

v1i; j = v1
∗

i; j − (p1
′

i; j − p1
′

i; j−1)x�=a
1v
i; j (37)

u2i; j = u2
∗

i; j + (p
1′
i; j − p1

′
i; j−1)y�=a2ui; j (38)

v2i; j = v2
∗

i; j + (p
1′
i; j − p1

′
i−1; j)x�=a

2v
i; j (39)

With these results (Equations (36)–(39)) the correction equation for contravariant velocity
components can be obtained

U 1
i; j = u1

∗
i; jy� − v2

∗
i; j x� − (p1

′
i; j − p1

′
i−1; j)g22=a

1u
i; j (40)

V 1
i; j = v1

∗
i; j x� − u2

∗
i; j y� − (p1

′
i; j − p1

′
i; j−1)g11=a

1v
i; j (41)

Equations (40) and (41) are substituted into the continuity equation (Equation (7)) and the
pressure correction equation is given by

ai; jp1
′

i; j= ai; j+1p1
′

i; j+1 + ai; j−1p1
′

i; j−1 + ai−1; jp1
′

i+1; j + ai−1; jp1
′

i−1; j + Si; j (42)

In a similar manner, the design equation (Equation (42)) may be derived for the second
pressure, on the assumption that the �rst pressure is entered into the source of the momentum
equation.
The solution of the Poisson equation in the discretized form (Equation (42)) yields p′,

which is added to p∗, giving an updated value for p. This updated pressure is used to
replace p∗ in successive cycles of iteration.

3.2. Pressure boundary conditions

The use of the algorithm SIMPLE in combination with domain discretization by means of
the MAC mesh allows the computation of the �rst pressure p1 without requiring the explicit
speci�cation of boundary conditions. At the boundaries, non-centred �rst-order or second-order
derivatives are used when necessary.
Two examples of how to specify boundary conditions for both pressures �elds and how

to couple them at the boundary are described below for external �ow (cylinder) and forced
convection within a cavity.

3.3. Generalization of the SIMPLE algorithm to a double grid

The overall computational procedure that was adopted is identical to the well-known SIMPLE
algorithm of Patankar [1]. The procedure is iterative, to account for the coupling of velocity
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1282 A. SHKLYAR AND A. ARBEL

and pressure, and the non-linearity in the momentum equations. Each iteration involves, in
sequence:
At the intermediate iterations, known �eld values of the �rst and second primitive variables:

p1
∗
, u1

∗
, p2

∗
, u2

∗
,

• calculating a coe�cients for u1;
• checking boundary conditions, and if necessary, calculating only the values of the bound-
ary a-coe�cients for v2;

• iterating the momentum equation with the pressures p1
∗
, p2

∗
to obtain the new velocity

�eld component u1
∗
;

• calculating a-coe�cients for v1;
• checking boundary conditions, and if necessary, calculating only the values of the bound-
ary a-coe�cients for u2;

• iterating the momentum equation with the pressures p1
∗
, p2

∗
to obtain the new velocity

�eld component v1
∗
;

• calculating U;V contravariant velocity components, and Poisson equation coe�cients for
pressure correction p1

′
;

• iterating the Poisson equation for pressure correction p1
′
;

• correcting the �rst pressure �eld and velocity �eld, calculating the boundary conditions
to pressure �elds;

• calculating coe�cients for the second velocity �eld u2 in accordance with the new �eld
variables;

• iterating the momentum equation with the new pressure p1
∗
, to obtain the new velocity

�eld component u2
∗
;

• iterating the momentum equation with the new pressures p1∗ , to obtain the new velocity
�eld component v2

∗
;

• calculating the Poisson equation coe�cients for pressure correction p2
′
;

• iterating the Poisson equation for pressure correction p2
′
;

• correcting the second pressure �eld and the second velocity �eld;
• repeat the cycle from the beginning as necessary:

‖pn+1 − pn‖¡�p (43)

The successive line under-relaxation (SLUR) method was used to solve the Poisson equations
for pressure correction and for momentum equation components. The relaxation parameter
depends on the properties of the algebraic equation systems and ranges up to 1.0.

4. ADAPTATION OF THE SOLUTION METHODOLOGY

The use of the methodology will be illustrated by means of numerical studies of external �ow
over a circular cylinder and internal driven �ow in a cavity.

4.1. Viscous incompressible �ow over a circular cylinder

The problem of viscous incompressible �ow over a circular cylinder has a long history
and numerous theoretical and numerical solutions have been developed by Fornberg [9],
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Figure 2. (a) Circular cylinder computational physical domain; (b) grid at the cylinder surface.

Imai [10], Braza et al. [11] and others (see Reference [12]). This example problem is con-
cerned with �ow over a circular cylinder. The Reynolds number Re, based on the diameter d,
is Red=U∞d=v. The quantity U∞ is the free-stream velocity and v is the kinematic coe�cient
of viscosity.
The x; y domain and conform grid 100× 100 are presented at the Figure 2, ratio of the

domain radius to cylinder radius is 50.
Something of the aspect of the de�nitions of the boundary conditions on the double stag-

gered grid discussed above formed the basis of this special case—�ow over a cylinder. Far-
�eld conditions were carefully considered [9] in terms of stream function  and vorticity !.
Four di�erent choices of boundary condition for  were considered:

• free stream (using  =0 on the outer edge);
• one term of the Oseen approximation (see, e.g. Reference [10]);
• normal derivative zero ( �=0);
• and, ‘mixed conditions’ connecting  and  � on the boundary.

From careful consideration of all these conditions, it appears that the use of the  �=0 for
Reynolds numbers up to about 40 solves the problem of boundary conditions for  at large
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distances. Thus, in de�nitions

u=  y + 1; v=− x (44)

in co-ordinates �; � at the boundary

u�y� − v�x�=y� (45)

or

V� =−y�; U� = (Ju� + y�x�)=x� (46)

For computational procedures it is preferable to write

v� = (u� − 1)y�=x� (47)

in potential �ow u� =1 and 0.
Additional in�nite boundary conditions for this elliptic system must be de�ned. An upwind

approximation of the vorticity transport may be added, but with a loss of accuracy [10]. In
the present paper, the condition !�=0 was used at the boundary.
In our discussion, we have adhered to control volume de�nitions, therefore, from the

continuity equation

u� =
1
J
(Ue + Vn − Vs)x� − y�x�

J
(48)

Pressure normal derivatives to x-axis:

py=(−x�p� + x�p�)=J (49)

for x�=0, and Equation (49) is equivalent to

p�=0 (50)

and this Neumann condition for pressure is discretized by one-sided di�erences

p0 = 9
8p1 − 1

8p2 (51)

At the cylinder surface, the �-axis coincides with the cylinder, and no-slip conditions are
applied for the grid functions u1; u2.
The Neumann conditions for the wall pressure p1 are obtained from the di�erential form

of the momentum equation at the cylinder surface. The symbol w denotes cylinder surface
nodes and, therefore, w− 1

2—denotes the centre of the �rst grid mesh adjacent to this surface,

C1
Re J

u��

∣∣∣∣
w
=y�p�|w − y�p�|w; C1

Re J
v��

∣∣∣∣
w
=−x�p�|w + x�p�|w (52)

on the orthogonal grid

p�|w = 1
Re J

(y�u��|w − x�v��|w) (53)

p�|w = C1
Re J 2

(x�u��|w + y�v��|w) (54)
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Figure 3. Pressure coe�cient on the cylinder surface: present study: —, Re=7; 10; 20; 40.
Fornberg [9]: ◦, Re=40; +, 20; �, 10.

From Equations (53) and (54), explicit surface coupling between p1 and p2 may be found

p2w; j+1=2 =p1w; j + p1�|w; j d�=2 (55)

where

p1w; j=p1w−1=2; j + p1�|w−1=2; j d�=2 (56)

Power-law scheme [1] are used in Equation (30) to approximate both convection and di�usion
�uxes

A
∣∣∣∣FD

∣∣∣∣=max
∣∣∣∣∣0;

(
1− 0:1

∣∣∣∣FD
∣∣∣∣
)5∣∣∣∣∣ (57)

Calculations were performed with grids ranging from 40× 40 to 100× 100, with double pre-
cision on PC with an accuracy of 10−15. No attempt was made to optimize the code in order
to reduce run times for this problem, or for the other solutions described below.
Figure 3 shows the distribution of the wall pressure coe�cients, compared with the numer-

ical results of Fornberg [10]. The calculation of the wall pressures at the rear and the front
of the cylinder are given in Table I.
In Figure 4 the dimensionless negative vorticity on the surface of the cylinder is shown.

Agreement with the numerical results of Braza et al. [11] was found to be satisfactory.
Various characteristic quantities, including Cf; Cp; �s; lw=d are listed in Tables II and III.
The separation angle, �s (listed in Table III) was determined from the condition !=0 at
the surface of the cylinder. The results for Re640 have generally been computed from a
steady-state model; maximum and minimum results [12] are presented in the tables, although
in some cases only one value is tabulated. The agreements between present and tabulated
values are seen to be reasonably good.
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Table I. Present calculations and published values (cited by Churchill [11]) for the
pressure coe�cients at the rear and the front of the cylinder.

2(p0 − p∞)=�u2∞ 2(pr − p∞)=�u2∞

Red Max Min Present Max Min Present

10 0.742 0.670 0.702 1.500 1.474 1.481
20 0.589 0.537 0.565 1.274 1.261 1.271
30 0.556 0.530 0.539 1.184 1.176 1.178
40 0.555 0.509 0.519 1.144 1.117 1.138
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Figure 4. Vorticity distribution over the surface of the cylinder: present study: —, Re=7; 10; 20; 30; 40.
Braza et al. [11]: ◦, Re=40; •, 20. Fornberg [9]: �, Re=40; N, 20.

Table II. Present calculations and published values (cited by Churchill [11]) for friction
drag coe�cients and pressure drag coe�cients.

Cf Cp

Red Max Min Present Max Min Present

10 0.623 0.615 0.610 0.800 — 0.789
20 0.427 0.406 0.393 0.662 0.617 0.617
30 0.332 — 0.309 0.508 — 0.548
40 0.284 0.257 0.259 0.538 0.498 0.511

4.2. Lid-driven cavity �ow

The second test case involves laminar �ows in which the �uid motion is induced by the
movement of one wall (lid-driven cavity �ows), as shown in Figure 5. Appropriate bench-
mark solutions were described by the Demird�zi�c et al. [13]. Non-orthogonal grids were set
up by inclining the sidewalls or by squeezing the cavity. Test case Cl corresponds to the
angle �=45◦, and test case C2 corresponds to �=30◦. In both cases, L=1, density �=1,
and lid velocity UL=1 were used in the calculations. The Reynolds number, de�ned for a lid
velocity, UL=1, and cavity length, L, was varied from 100 to 1000.
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Table III. Present calculations and published values (cited by Churchill [11]) for
attachment angle and wake length.

lw=d �s

Red Max Min Present Max Min Present

10 0.530 0.434 0.499 29.3 28.00 28.8
20 1.880 1.683 1.827 43.7 42.80 43.1
30 3.223 2.855 3.159 49.6 49.07 49.09
40 4.690 4.046 4.488 54.2 50.00 53.02

Figure 5. Geometry, boundary conditions and uniform grid for test cases.

Non-uniform, symmetrically expanding towards the centreline from all walls, were implied
by Demird�zi�c et al. [13], e.g. on the �nest grid, with a 320× 320 control volume, the smallest
�x was L=757.
Uniform grids from 160× 160 to 480× 480 are used for testing double staggered algorithms.

For the type of grid as shown in Figure 5, x�=1, y�=0, x�= cos�; y�= sin �. Boundary
conditions are v= u=0 at the walls and the bottom, and v=0, u=UL at the cavity top.
Central-di�erences are used in Equation (31) to approximate both convection and di�usion
�uxes [1]

A
∣∣∣∣FD

∣∣∣∣=1− 0:5
∣∣∣∣FD

∣∣∣∣ (58)

In the momentum equations, values of the pressure at the boundary nodes are required to
evaluate the pressure gradient. Linear extrapolation from interior values of the pressure was
used for collocated grids [13]. Comparisons between the presented algorithm and bench-mark
solutions were done by linear extrapolation from interior values, e.g. at the bottom wall

p10 = 0:5(3p
1
1 − p12) (59)

p2 at the walls is computed as the average of p1; this method of calculating the wall pressure
is valid for a small �eld gradient at the wall, but in the general case the wall pressure must
be determined by means of the momentum equation.
The Neumann conditions for the wall pressure p obtained from the di�erential form of

the momentum equation at the walls (for grid type in Figure 4) at the left and right
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Figure 6. Centreline velocity pro�les for Re=100, �=45◦; (a) u-component;
(b) v-component: —, present study; +, Demird�zi�c et al. [13].

walls (�=0; 1)

p�=(u�� − 2x�u��)
1

Re y2�
+ v��

1
Re

− (Uu)�
1
y�
+ (U� + V�)�

1
Re

(60)

at these walls p� is used for calculations of p1, and p� for calculation of p2 along this walls

p�=(x�u�� − 2x2�u�� + y�v�� − 2x�y�v��)
1

Re y2�
− (Uu)�

x�
y�

− (Uv)� (61)
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Figure 7. Centreline velocity pro�les for Re=100, �=30◦; (a) u-component;
(b) v-component: —, this study; +, Demird�zi�c et al. [13].

and at the top and bottom walls (�=0; 1)

p�=(x�u�� − 2x�u�� + y�v�� − 2y�v��)
1

Re y2�
− (Vu)� x�y�

− (Vv)� (62)

p�=(u�� − 2x�u��)
1

Re y2�
− (Vu)� 1y�

(63)

at these walls p� is used for calculation of p1 at the walls, and p� for calculation of p2.
Pressures at the walls are calculated in accordance Equations (55) and (56). Extrapolated
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Figure 8. Centreline velocity pro�les for Re=1000, �=45◦; (a) u-component;
(b) v-component: —, present study; +, Demird�zi�c et al. [13].

values p1 or p2 are corrected in accordance to the maximum (minimum) theorem for elliptic
equations. p1 should be more (less) than its neighbours at the cell boundaries.
The double staggered algorithm was tested with double precision on a Workstation Alpha

XP 1000. The iteration number of the pressure correction equation was found to be 10 and
that of the momentum equation was set to 4. For Re=100, Figures 6 and 7 show excellent
agreement with bench-mark solutions [13]. For Re=1000 the results of the double staggered
grid and the collocated multi-grid method [13] were in quite close agreement, as seen in
Figures 8 and 9, these �gures also show that the u velocity components are in slight disagree-
ment at their maximum. Streamlines predicted on the 320× 320 grids for �ow case �=30◦
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Figure 9. Centreline velocity pro�les for Re=1000, �=30◦; (a) u-component;
(b) v-component: —, present study; +, Demird�zi�c et al. [13].

and Re=1000 are presented in Figure 10; they show typical features of such �ow [13]. The
pattern of the streamlines was calculated from the vorticity-stream function formulation of
one of the momentum equations (see Reference [14]).

�	+!=0 (64)

or, for grid type at Figure 5

C1	�� + C3	�� − 2C2	�� + x�u� + y�v� − u�=0 (65)
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Figure 10. Predicted streamlines for Re=1000, �=30◦.

Table IV. Minimum and maximum stream function values in vortex centres, and their positions.

Re=100 Re=1000

Demird�zi�c et al. [13] Present Demird�zi�c et al. [13] Present

�=45◦

	min −7:0226× 10−2 −7:0129× 10−2 −5:3507× 10−2 −5:2553× 10−2
x 1:1100× 10−0 1:1146× 10−0 1:3130× 10−0 1:3120× 10−0
y 5:4638× 10−1 5:4581× 10−1 5:7404× 10−1 5:7453× 10−1
� 0.0219405 0.0219405 0.1068854 0.1068854

	max 3:6831× 10−5 3:9227× 10−5 1:0039× 10−2 1:0039× 10−2
x 3:3867× 10−1 3:2075× 10−1 7:7663× 10−1 7:7663× 10−1
y 1:4308× 10−1 1:9888× 10−1 3:9851× 10−1 3:9851× 10−1
� 1.3554620 1.3554620 0.3313280 0.3313280

�=30◦

	min −5:3135× 10−2 −5:3004× 10−2 −3:8566× 10−2 −3:8185× 10−2
x 1:1664× 10−0 1:1674× 10−0 1:4583× 10−0 1:4583× 10−0
y 3:7898× 10−1 3:7813× 10−1 4:1086× 10−1 4:1093× 10−1
� 0.0332841 0.0332841 0.0538782 0.0538782

	max 5:6058× 10−5 5:7000× 10−5 4:1494× 10−3 3:8891× 10−3
x 5:2692× 10−1 5:2105× 10−1 9:0386× 10−1 8:9008× 10−1
y 1:4334× 10−1 1:5433× 10−1 2:5501× 10−1 2:6446× 10−1
� 5.0257323 5.0257323 0.8776961 0.8776961

The double grid arrangement was also applied to (65); Neuman conditions 	1� |�=0;1 = 0; 	1� |�=0
=0;	1� |�=1 =1 were set for the �rst grid function, 	1, and wall boundary conditions were set
to zero for the second grid function, 	2. Minimum and maximum stream function values in
vortex centres and their positions as predicted on the 320× 320 grid are presented in Table IV.
Small quantitative di�erences were found in the displacement of the maximum stream function
values of the vortexes and its intensities.
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5. CONCLUSIONS

A methodology has been presented for the numerical solution of two-dimensional convection–
di�usion problems for arbitrary solution domains. Special features of the methodology include:

• Use of a double-staggered grid (DSG) in general curvilinear co-ordinates.
• Use of the integral form of the conservation equations as the starting point for the
derivation of the �nite-di�erence equations.

• Development of a new set of boundary conditions for primitive variables for an arbitrary
domain.

• The discretized equations and their solutions were linked to the widely used SIMPLE
algorithm for orthogonal systems.

Use of this methodology was illustrated by the solutions of external �ow over a circular
cylinder and lid-driven cavity internal �ow. The numerical results were found to be in good
agreement with published solutions.
The DSG method as presented can be extending to the solution of additional problems

(heat transfer, turbulence quantities, etc.). The development of such an extension is presently
under way.

NOMENCLATURE

a in�uence coe�cients matrix in the �nite di�erence equation
C drag coe�cient
C1; C2; C3; C4 transformed di�usion coe�cients
J Jacobian of the transformation
J mass �ux
g matrix transformation
l length
p pressure
Re Reynolds number
S source term in the discretized equations
u velocity vector
u; v Cartesian velocity components
U;V contravariant velocity components
x; y Cartesian co-ordinate system
�; � general curvilinear co-ordinates
� angle
� density
’ general scalar �eld
 stream function
! vorticity, != vx − uy

Superscripts

1,2 �rst and second primitive variables �elds
* tentative variables �elds
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′ �eld correction
u velocity

Subscripts

E; P; N; S;W values associated with centres of neighbour control volumes
e; n; s; w values associated with control volumes faces
f friction
p pressure
r rear stagnation point
s separation angle
x; y; �; � partial derivatives
w wake
� domain boundary
0 front stagnation point
∞ free stream
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